Metamath Proof Explorer


Theorem extssr

Description: Property of subset relation, see also extid , extep and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)

Ref Expression
Assertion extssr AVBWAS-1=BS-1A=B

Proof

Step Hyp Ref Expression
1 brssr AVxSAxA
2 brssr BWxSBxB
3 1 2 bi2bian9 AVBWxSAxSBxAxB
4 3 albidv AVBWxxSAxSBxxAxB
5 relssr RelS
6 releccnveq RelSRelSAS-1=BS-1xxSAxSB
7 5 5 6 mp2an AS-1=BS-1xxSAxSB
8 ssext A=BxxAxB
9 4 7 8 3bitr4g AVBWAS-1=BS-1A=B