Step |
Hyp |
Ref |
Expression |
1 |
|
brssr |
|- ( A e. V -> ( x _S A <-> x C_ A ) ) |
2 |
|
brssr |
|- ( B e. W -> ( x _S B <-> x C_ B ) ) |
3 |
1 2
|
bi2bian9 |
|- ( ( A e. V /\ B e. W ) -> ( ( x _S A <-> x _S B ) <-> ( x C_ A <-> x C_ B ) ) ) |
4 |
3
|
albidv |
|- ( ( A e. V /\ B e. W ) -> ( A. x ( x _S A <-> x _S B ) <-> A. x ( x C_ A <-> x C_ B ) ) ) |
5 |
|
relssr |
|- Rel _S |
6 |
|
releccnveq |
|- ( ( Rel _S /\ Rel _S ) -> ( [ A ] `' _S = [ B ] `' _S <-> A. x ( x _S A <-> x _S B ) ) ) |
7 |
5 5 6
|
mp2an |
|- ( [ A ] `' _S = [ B ] `' _S <-> A. x ( x _S A <-> x _S B ) ) |
8 |
|
ssext |
|- ( A = B <-> A. x ( x C_ A <-> x C_ B ) ) |
9 |
4 7 8
|
3bitr4g |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _S = [ B ] `' _S <-> A = B ) ) |