Description: Property of epsilon relation, see also extid , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extep | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _E = [ B ] `' _E <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eccnvep | |- ( A e. V -> [ A ] `' _E = A ) |
|
| 2 | eccnvep | |- ( B e. W -> [ B ] `' _E = B ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _E = [ B ] `' _E <-> A = B ) ) |