Description: Property of epsilon relation, see also extid , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | extep | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _E = [ B ] `' _E <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eccnvep | |- ( A e. V -> [ A ] `' _E = A ) |
|
2 | eccnvep | |- ( B e. W -> [ B ] `' _E = B ) |
|
3 | 1 2 | eqeqan12d | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _E = [ B ] `' _E <-> A = B ) ) |