Description: Property of identity relation, see also extep , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | extid | |- ( A e. V -> ( [ A ] `' _I = [ B ] `' _I <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi | |- `' _I = _I |
|
2 | 1 | eceq2i | |- [ A ] `' _I = [ A ] _I |
3 | ecidsn | |- [ A ] _I = { A } |
|
4 | 2 3 | eqtri | |- [ A ] `' _I = { A } |
5 | 1 | eceq2i | |- [ B ] `' _I = [ B ] _I |
6 | ecidsn | |- [ B ] _I = { B } |
|
7 | 5 6 | eqtri | |- [ B ] `' _I = { B } |
8 | 4 7 | eqeq12i | |- ( [ A ] `' _I = [ B ] `' _I <-> { A } = { B } ) |
9 | sneqbg | |- ( A e. V -> ( { A } = { B } <-> A = B ) ) |
|
10 | 8 9 | syl5bb | |- ( A e. V -> ( [ A ] `' _I = [ B ] `' _I <-> A = B ) ) |