Description: Property of identity relation, see also extep , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extid | |- ( A e. V -> ( [ A ] `' _I = [ B ] `' _I <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi | |- `' _I = _I |
|
| 2 | 1 | eceq2i | |- [ A ] `' _I = [ A ] _I |
| 3 | ecidsn | |- [ A ] _I = { A } |
|
| 4 | 2 3 | eqtri | |- [ A ] `' _I = { A } |
| 5 | 1 | eceq2i | |- [ B ] `' _I = [ B ] _I |
| 6 | ecidsn | |- [ B ] _I = { B } |
|
| 7 | 5 6 | eqtri | |- [ B ] `' _I = { B } |
| 8 | 4 7 | eqeq12i | |- ( [ A ] `' _I = [ B ] `' _I <-> { A } = { B } ) |
| 9 | sneqbg | |- ( A e. V -> ( { A } = { B } <-> A = B ) ) |
|
| 10 | 8 9 | bitrid | |- ( A e. V -> ( [ A ] `' _I = [ B ] `' _I <-> A = B ) ) |