Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | disjeccnvep | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) <-> ( A i^i B ) = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eccnvep | |- ( A e. V -> [ A ] `' _E = A ) |
|
2 | eccnvep | |- ( B e. W -> [ B ] `' _E = B ) |
|
3 | 1 2 | ineqan12d | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _E i^i [ B ] `' _E ) = ( A i^i B ) ) |
4 | 3 | eqeq1d | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) <-> ( A i^i B ) = (/) ) ) |