Metamath Proof Explorer


Theorem disjeccnvep

Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020)

Ref Expression
Assertion disjeccnvep AVBWAE-1BE-1=AB=

Proof

Step Hyp Ref Expression
1 eccnvep AVAE-1=A
2 eccnvep BWBE-1=B
3 1 2 ineqan12d AVBWAE-1BE-1=AB
4 3 eqeq1d AVBWAE-1BE-1=AB=