Metamath Proof Explorer


Theorem disjeccnvep

Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020)

Ref Expression
Assertion disjeccnvep ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] E ∩ [ 𝐵 ] E ) = ∅ ↔ ( 𝐴𝐵 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 eccnvep ( 𝐴𝑉 → [ 𝐴 ] E = 𝐴 )
2 eccnvep ( 𝐵𝑊 → [ 𝐵 ] E = 𝐵 )
3 1 2 ineqan12d ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] E ∩ [ 𝐵 ] E ) = ( 𝐴𝐵 ) )
4 3 eqeq1d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] E ∩ [ 𝐵 ] E ) = ∅ ↔ ( 𝐴𝐵 ) = ∅ ) )