Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | disjeccnvep | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eccnvep | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ◡ E = 𝐴 ) | |
2 | eccnvep | ⊢ ( 𝐵 ∈ 𝑊 → [ 𝐵 ] ◡ E = 𝐵 ) | |
3 | 1 2 | ineqan12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ( 𝐴 ∩ 𝐵 ) ) |
4 | 3 | eqeq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |