Metamath Proof Explorer


Theorem extep

Description: Property of epsilon relation, see also extid , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)

Ref Expression
Assertion extep ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] E = [ 𝐵 ] E ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eccnvep ( 𝐴𝑉 → [ 𝐴 ] E = 𝐴 )
2 eccnvep ( 𝐵𝑊 → [ 𝐵 ] E = 𝐵 )
3 1 2 eqeqan12d ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] E = [ 𝐵 ] E ↔ 𝐴 = 𝐵 ) )