Metamath Proof Explorer
Description: Property of epsilon relation, see also extid , extssr and the comment
of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
|
|
Ref |
Expression |
|
Assertion |
extep |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ E = [ 𝐵 ] ◡ E ↔ 𝐴 = 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eccnvep |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ◡ E = 𝐴 ) |
2 |
|
eccnvep |
⊢ ( 𝐵 ∈ 𝑊 → [ 𝐵 ] ◡ E = 𝐵 ) |
3 |
1 2
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ E = [ 𝐵 ] ◡ E ↔ 𝐴 = 𝐵 ) ) |