Step |
Hyp |
Ref |
Expression |
1 |
|
brssr |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
2 |
|
brssr |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵 ) ) |
3 |
1 2
|
bi2bian9 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) ) |
4 |
3
|
albidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) ) |
5 |
|
relssr |
⊢ Rel S |
6 |
|
releccnveq |
⊢ ( ( Rel S ∧ Rel S ) → ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ) ) |
7 |
5 5 6
|
mp2an |
⊢ ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ) |
8 |
|
ssext |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |
9 |
4 7 8
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ 𝐴 = 𝐵 ) ) |