Metamath Proof Explorer


Theorem extssr

Description: Property of subset relation, see also extid , extep and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)

Ref Expression
Assertion extssr ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] S = [ 𝐵 ] S ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 brssr ( 𝐴𝑉 → ( 𝑥 S 𝐴𝑥𝐴 ) )
2 brssr ( 𝐵𝑊 → ( 𝑥 S 𝐵𝑥𝐵 ) )
3 1 2 bi2bian9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝑥 S 𝐴𝑥 S 𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
4 3 albidv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ( 𝑥 S 𝐴𝑥 S 𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ) )
5 relssr Rel S
6 releccnveq ( ( Rel S ∧ Rel S ) → ( [ 𝐴 ] S = [ 𝐵 ] S ↔ ∀ 𝑥 ( 𝑥 S 𝐴𝑥 S 𝐵 ) ) )
7 5 5 6 mp2an ( [ 𝐴 ] S = [ 𝐵 ] S ↔ ∀ 𝑥 ( 𝑥 S 𝐴𝑥 S 𝐵 ) )
8 ssext ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
9 4 7 8 3bitr4g ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] S = [ 𝐵 ] S ↔ 𝐴 = 𝐵 ) )