Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq12d2.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| ifbieq12d2.2 | |- ( ( ph /\ ps ) -> A = C ) |
||
| ifbieq12d2.3 | |- ( ( ph /\ -. ps ) -> B = D ) |
||
| Assertion | ifbieq12d2 | |- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d2.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | ifbieq12d2.2 | |- ( ( ph /\ ps ) -> A = C ) |
|
| 3 | ifbieq12d2.3 | |- ( ( ph /\ -. ps ) -> B = D ) |
|
| 4 | 2 3 | ifeq12da | |- ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |
| 5 | 1 | ifbid | |- ( ph -> if ( ps , C , D ) = if ( ch , C , D ) ) |
| 6 | 4 5 | eqtrd | |- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) ) |