Metamath Proof Explorer


Theorem ifbieq12d2

Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)

Ref Expression
Hypotheses ifbieq12d2.1 φψχ
ifbieq12d2.2 φψA=C
ifbieq12d2.3 φ¬ψB=D
Assertion ifbieq12d2 φifψAB=ifχCD

Proof

Step Hyp Ref Expression
1 ifbieq12d2.1 φψχ
2 ifbieq12d2.2 φψA=C
3 ifbieq12d2.3 φ¬ψB=D
4 2 3 ifeq12da φifψAB=ifψCD
5 1 ifbid φifψCD=ifχCD
6 4 5 eqtrd φifψAB=ifχCD