Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinin1 | |- ( A =/= (/) -> |^|_ x e. A ( C i^i B ) = ( |^|_ x e. A C i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinin2 | |- ( A =/= (/) -> |^|_ x e. A ( B i^i C ) = ( B i^i |^|_ x e. A C ) ) |
|
| 2 | incom | |- ( C i^i B ) = ( B i^i C ) |
|
| 3 | 2 | a1i | |- ( x e. A -> ( C i^i B ) = ( B i^i C ) ) |
| 4 | 3 | iineq2i | |- |^|_ x e. A ( C i^i B ) = |^|_ x e. A ( B i^i C ) |
| 5 | incom | |- ( |^|_ x e. A C i^i B ) = ( B i^i |^|_ x e. A C ) |
|
| 6 | 1 4 5 | 3eqtr4g | |- ( A =/= (/) -> |^|_ x e. A ( C i^i B ) = ( |^|_ x e. A C i^i B ) ) |