| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dif0 |  |-  ( _V \ (/) ) = _V | 
						
							| 2 |  | 0iun |  |-  U_ x e. (/) B = (/) | 
						
							| 3 | 2 | difeq2i |  |-  ( _V \ U_ x e. (/) B ) = ( _V \ (/) ) | 
						
							| 4 |  | 0iin |  |-  |^|_ x e. (/) ( _V \ B ) = _V | 
						
							| 5 | 1 3 4 | 3eqtr4ri |  |-  |^|_ x e. (/) ( _V \ B ) = ( _V \ U_ x e. (/) B ) | 
						
							| 6 |  | iineq1 |  |-  ( A = (/) -> |^|_ x e. A ( _V \ B ) = |^|_ x e. (/) ( _V \ B ) ) | 
						
							| 7 |  | iuneq1 |  |-  ( A = (/) -> U_ x e. A B = U_ x e. (/) B ) | 
						
							| 8 | 7 | difeq2d |  |-  ( A = (/) -> ( _V \ U_ x e. A B ) = ( _V \ U_ x e. (/) B ) ) | 
						
							| 9 | 5 6 8 | 3eqtr4a |  |-  ( A = (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) | 
						
							| 10 |  | iindif2 |  |-  ( A =/= (/) -> |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) ) | 
						
							| 11 | 9 10 | pm2.61ine |  |-  |^|_ x e. A ( _V \ B ) = ( _V \ U_ x e. A B ) |