Metamath Proof Explorer


Theorem iinvdif

Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Assertion iinvdif xAVB=VxAB

Proof

Step Hyp Ref Expression
1 dif0 V=V
2 0iun xB=
3 2 difeq2i VxB=V
4 0iin xVB=V
5 1 3 4 3eqtr4ri xVB=VxB
6 iineq1 A=xAVB=xVB
7 iuneq1 A=xAB=xB
8 7 difeq2d A=VxAB=VxB
9 5 6 8 3eqtr4a A=xAVB=VxAB
10 iindif2 AxAVB=VxAB
11 9 10 pm2.61ine xAVB=VxAB