Description: Imaginary part of a product. (Contributed by NM, 28-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | immul | |- ( ( A e. CC /\ B e. CC ) -> ( Im ` ( A x. B ) ) = ( ( ( Re ` A ) x. ( Im ` B ) ) + ( ( Im ` A ) x. ( Re ` B ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remullem | |- ( ( A e. CC /\ B e. CC ) -> ( ( Re ` ( A x. B ) ) = ( ( ( Re ` A ) x. ( Re ` B ) ) - ( ( Im ` A ) x. ( Im ` B ) ) ) /\ ( Im ` ( A x. B ) ) = ( ( ( Re ` A ) x. ( Im ` B ) ) + ( ( Im ` A ) x. ( Re ` B ) ) ) /\ ( * ` ( A x. B ) ) = ( ( * ` A ) x. ( * ` B ) ) ) ) |
|
2 | 1 | simp2d | |- ( ( A e. CC /\ B e. CC ) -> ( Im ` ( A x. B ) ) = ( ( ( Re ` A ) x. ( Im ` B ) ) + ( ( Im ` A ) x. ( Re ` B ) ) ) ) |