Metamath Proof Explorer


Theorem imre

Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imre
|- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) )

Proof

Step Hyp Ref Expression
1 imval
 |-  ( A e. CC -> ( Im ` A ) = ( Re ` ( A / _i ) ) )
2 ax-icn
 |-  _i e. CC
3 ine0
 |-  _i =/= 0
4 divrec2
 |-  ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) )
5 2 3 4 mp3an23
 |-  ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) )
6 irec
 |-  ( 1 / _i ) = -u _i
7 6 oveq1i
 |-  ( ( 1 / _i ) x. A ) = ( -u _i x. A )
8 5 7 syl6eq
 |-  ( A e. CC -> ( A / _i ) = ( -u _i x. A ) )
9 8 fveq2d
 |-  ( A e. CC -> ( Re ` ( A / _i ) ) = ( Re ` ( -u _i x. A ) ) )
10 1 9 eqtrd
 |-  ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) )