| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
| 2 |
1
|
sseq2d |
|- ( a = A -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` A ) ) ) |
| 3 |
2
|
imbi2d |
|- ( a = A -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` A ) ) ) ) |
| 4 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
| 5 |
4
|
sseq2d |
|- ( a = b -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` b ) ) ) |
| 6 |
5
|
imbi2d |
|- ( a = b -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` b ) ) ) ) |
| 7 |
|
fveq2 |
|- ( a = ( b + 1 ) -> ( F ` a ) = ( F ` ( b + 1 ) ) ) |
| 8 |
7
|
sseq2d |
|- ( a = ( b + 1 ) -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
| 9 |
8
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
| 10 |
|
fveq2 |
|- ( a = B -> ( F ` a ) = ( F ` B ) ) |
| 11 |
10
|
sseq2d |
|- ( a = B -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
| 12 |
11
|
imbi2d |
|- ( a = B -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` B ) ) ) ) |
| 13 |
|
ssid |
|- ( F ` A ) C_ ( F ` A ) |
| 14 |
13
|
2a1i |
|- ( A e. ZZ -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` A ) ) ) |
| 15 |
|
eluznn0 |
|- ( ( A e. NN0 /\ b e. ( ZZ>= ` A ) ) -> b e. NN0 ) |
| 16 |
15
|
ancoms |
|- ( ( b e. ( ZZ>= ` A ) /\ A e. NN0 ) -> b e. NN0 ) |
| 17 |
|
fveq2 |
|- ( x = b -> ( F ` x ) = ( F ` b ) ) |
| 18 |
|
fvoveq1 |
|- ( x = b -> ( F ` ( x + 1 ) ) = ( F ` ( b + 1 ) ) ) |
| 19 |
17 18
|
sseq12d |
|- ( x = b -> ( ( F ` x ) C_ ( F ` ( x + 1 ) ) <-> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
| 20 |
19
|
rspcv |
|- ( b e. NN0 -> ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
| 21 |
16 20
|
syl |
|- ( ( b e. ( ZZ>= ` A ) /\ A e. NN0 ) -> ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
| 22 |
21
|
expimpd |
|- ( b e. ( ZZ>= ` A ) -> ( ( A e. NN0 /\ A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
| 23 |
22
|
ancomsd |
|- ( b e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
| 24 |
|
sstr2 |
|- ( ( F ` A ) C_ ( F ` b ) -> ( ( F ` b ) C_ ( F ` ( b + 1 ) ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
| 25 |
24
|
com12 |
|- ( ( F ` b ) C_ ( F ` ( b + 1 ) ) -> ( ( F ` A ) C_ ( F ` b ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
| 26 |
23 25
|
syl6 |
|- ( b e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( ( F ` A ) C_ ( F ` b ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
| 27 |
26
|
a2d |
|- ( b e. ( ZZ>= ` A ) -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` b ) ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
| 28 |
3 6 9 12 14 27
|
uzind4 |
|- ( B e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` B ) ) ) |
| 29 |
28
|
com12 |
|- ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( B e. ( ZZ>= ` A ) -> ( F ` A ) C_ ( F ` B ) ) ) |
| 30 |
29
|
3impia |
|- ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 /\ B e. ( ZZ>= ` A ) ) -> ( F ` A ) C_ ( F ` B ) ) |