Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indisconn | |- { (/) , A } e. Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistop | |- { (/) , A } e. Top |
|
2 | inss1 | |- ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , A } |
|
3 | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
|
4 | 2 3 | sseqtrri | |- ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) } |
5 | indisuni | |- ( _I ` A ) = U. { (/) , A } |
|
6 | 5 | isconn2 | |- ( { (/) , A } e. Conn <-> ( { (/) , A } e. Top /\ ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) } ) ) |
7 | 1 4 6 | mpbir2an | |- { (/) , A } e. Conn |