Metamath Proof Explorer


Theorem indisconn

Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisconn
|- { (/) , A } e. Conn

Proof

Step Hyp Ref Expression
1 indistop
 |-  { (/) , A } e. Top
2 inss1
 |-  ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , A }
3 indislem
 |-  { (/) , ( _I ` A ) } = { (/) , A }
4 2 3 sseqtrri
 |-  ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) }
5 indisuni
 |-  ( _I ` A ) = U. { (/) , A }
6 5 isconn2
 |-  ( { (/) , A } e. Conn <-> ( { (/) , A } e. Top /\ ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) } ) )
7 1 4 6 mpbir2an
 |-  { (/) , A } e. Conn