Description: The indiscrete topology on a set A expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 from the structural version indistps . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indistps2ALT.a | |- ( Base ` K ) = A | |
| indistps2ALT.j | |- ( TopOpen ` K ) = { (/) , A } | ||
| Assertion | indistps2ALT | |- K e. TopSp | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indistps2ALT.a | |- ( Base ` K ) = A | |
| 2 | indistps2ALT.j |  |-  ( TopOpen ` K ) = { (/) , A } | |
| 3 | fvex | |- ( Base ` K ) e. _V | |
| 4 | 1 3 | eqeltrri | |- A e. _V | 
| 5 | indistopon |  |-  ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) | |
| 6 | 4 5 | ax-mp |  |-  { (/) , A } e. ( TopOn ` A ) | 
| 7 | 1 | eqcomi | |- A = ( Base ` K ) | 
| 8 | 2 | eqcomi |  |-  { (/) , A } = ( TopOpen ` K ) | 
| 9 | 7 8 | istps |  |-  ( K e. TopSp <-> { (/) , A } e. ( TopOn ` A ) ) | 
| 10 | 6 9 | mpbir | |- K e. TopSp |