Description: AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-addcomd.1 | |- ( ph -> B e. RR ) |
|
| int-addcomd.2 | |- ( ph -> C e. RR ) |
||
| int-addcomd.3 | |- ( ph -> A = B ) |
||
| Assertion | int-addcomd | |- ( ph -> ( B + C ) = ( C + A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-addcomd.1 | |- ( ph -> B e. RR ) |
|
| 2 | int-addcomd.2 | |- ( ph -> C e. RR ) |
|
| 3 | int-addcomd.3 | |- ( ph -> A = B ) |
|
| 4 | 1 | recnd | |- ( ph -> B e. CC ) |
| 5 | 2 | recnd | |- ( ph -> C e. CC ) |
| 6 | 4 5 | addcomd | |- ( ph -> ( B + C ) = ( C + B ) ) |
| 7 | 3 | eqcomd | |- ( ph -> B = A ) |
| 8 | 7 | oveq2d | |- ( ph -> ( C + B ) = ( C + A ) ) |
| 9 | 6 8 | eqtrd | |- ( ph -> ( B + C ) = ( C + A ) ) |