Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-addassocd.1 | |- ( ph -> A e. RR ) |
|
int-addassocd.2 | |- ( ph -> C e. RR ) |
||
int-addassocd.3 | |- ( ph -> D e. RR ) |
||
int-addassocd.4 | |- ( ph -> A = B ) |
||
Assertion | int-addassocd | |- ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-addassocd.1 | |- ( ph -> A e. RR ) |
|
2 | int-addassocd.2 | |- ( ph -> C e. RR ) |
|
3 | int-addassocd.3 | |- ( ph -> D e. RR ) |
|
4 | int-addassocd.4 | |- ( ph -> A = B ) |
|
5 | 1 | recnd | |- ( ph -> A e. CC ) |
6 | 2 | recnd | |- ( ph -> C e. CC ) |
7 | 3 | recnd | |- ( ph -> D e. CC ) |
8 | 5 6 7 | addassd | |- ( ph -> ( ( A + C ) + D ) = ( A + ( C + D ) ) ) |
9 | 4 | oveq1d | |- ( ph -> ( A + ( C + D ) ) = ( B + ( C + D ) ) ) |
10 | 8 9 | eqtr2d | |- ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) ) |