Metamath Proof Explorer


Theorem int-addassocd

Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addassocd.1
|- ( ph -> A e. RR )
int-addassocd.2
|- ( ph -> C e. RR )
int-addassocd.3
|- ( ph -> D e. RR )
int-addassocd.4
|- ( ph -> A = B )
Assertion int-addassocd
|- ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) )

Proof

Step Hyp Ref Expression
1 int-addassocd.1
 |-  ( ph -> A e. RR )
2 int-addassocd.2
 |-  ( ph -> C e. RR )
3 int-addassocd.3
 |-  ( ph -> D e. RR )
4 int-addassocd.4
 |-  ( ph -> A = B )
5 1 recnd
 |-  ( ph -> A e. CC )
6 2 recnd
 |-  ( ph -> C e. CC )
7 3 recnd
 |-  ( ph -> D e. CC )
8 5 6 7 addassd
 |-  ( ph -> ( ( A + C ) + D ) = ( A + ( C + D ) ) )
9 4 oveq1d
 |-  ( ph -> ( A + ( C + D ) ) = ( B + ( C + D ) ) )
10 8 9 eqtr2d
 |-  ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) )