Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-addassocd.1 | |- ( ph -> A e. RR ) |
|
| int-addassocd.2 | |- ( ph -> C e. RR ) |
||
| int-addassocd.3 | |- ( ph -> D e. RR ) |
||
| int-addassocd.4 | |- ( ph -> A = B ) |
||
| Assertion | int-addassocd | |- ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-addassocd.1 | |- ( ph -> A e. RR ) |
|
| 2 | int-addassocd.2 | |- ( ph -> C e. RR ) |
|
| 3 | int-addassocd.3 | |- ( ph -> D e. RR ) |
|
| 4 | int-addassocd.4 | |- ( ph -> A = B ) |
|
| 5 | 1 | recnd | |- ( ph -> A e. CC ) |
| 6 | 2 | recnd | |- ( ph -> C e. CC ) |
| 7 | 3 | recnd | |- ( ph -> D e. CC ) |
| 8 | 5 6 7 | addassd | |- ( ph -> ( ( A + C ) + D ) = ( A + ( C + D ) ) ) |
| 9 | 4 | oveq1d | |- ( ph -> ( A + ( C + D ) ) = ( B + ( C + D ) ) ) |
| 10 | 8 9 | eqtr2d | |- ( ph -> ( B + ( C + D ) ) = ( ( A + C ) + D ) ) |