Metamath Proof Explorer


Theorem int-addsimpd

Description: AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addsimpd.1
|- ( ph -> A e. RR )
int-addsimpd.2
|- ( ph -> A = B )
Assertion int-addsimpd
|- ( ph -> 0 = ( A - B ) )

Proof

Step Hyp Ref Expression
1 int-addsimpd.1
 |-  ( ph -> A e. RR )
2 int-addsimpd.2
 |-  ( ph -> A = B )
3 1 recnd
 |-  ( ph -> A e. CC )
4 3 2 subeq0bd
 |-  ( ph -> ( A - B ) = 0 )
5 4 eqcomd
 |-  ( ph -> 0 = ( A - B ) )