Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-mulcomd.1 | |- ( ph -> B e. RR ) |
|
int-mulcomd.2 | |- ( ph -> C e. RR ) |
||
int-mulcomd.3 | |- ( ph -> A = B ) |
||
Assertion | int-mulcomd | |- ( ph -> ( B x. C ) = ( C x. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mulcomd.1 | |- ( ph -> B e. RR ) |
|
2 | int-mulcomd.2 | |- ( ph -> C e. RR ) |
|
3 | int-mulcomd.3 | |- ( ph -> A = B ) |
|
4 | 1 | recnd | |- ( ph -> B e. CC ) |
5 | 2 | recnd | |- ( ph -> C e. CC ) |
6 | 4 5 | mulcomd | |- ( ph -> ( B x. C ) = ( C x. B ) ) |
7 | 3 | eqcomd | |- ( ph -> B = A ) |
8 | 7 | oveq2d | |- ( ph -> ( C x. B ) = ( C x. A ) ) |
9 | 6 8 | eqtrd | |- ( ph -> ( B x. C ) = ( C x. A ) ) |