Metamath Proof Explorer


Theorem int-mulcomd

Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulcomd.1
|- ( ph -> B e. RR )
int-mulcomd.2
|- ( ph -> C e. RR )
int-mulcomd.3
|- ( ph -> A = B )
Assertion int-mulcomd
|- ( ph -> ( B x. C ) = ( C x. A ) )

Proof

Step Hyp Ref Expression
1 int-mulcomd.1
 |-  ( ph -> B e. RR )
2 int-mulcomd.2
 |-  ( ph -> C e. RR )
3 int-mulcomd.3
 |-  ( ph -> A = B )
4 1 recnd
 |-  ( ph -> B e. CC )
5 2 recnd
 |-  ( ph -> C e. CC )
6 4 5 mulcomd
 |-  ( ph -> ( B x. C ) = ( C x. B ) )
7 3 eqcomd
 |-  ( ph -> B = A )
8 7 oveq2d
 |-  ( ph -> ( C x. B ) = ( C x. A ) )
9 6 8 eqtrd
 |-  ( ph -> ( B x. C ) = ( C x. A ) )