Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-mulassocd.1 | |- ( ph -> B e. RR ) |
|
int-mulassocd.2 | |- ( ph -> C e. RR ) |
||
int-mulassocd.3 | |- ( ph -> D e. RR ) |
||
int-mulassocd.4 | |- ( ph -> A = B ) |
||
Assertion | int-mulassocd | |- ( ph -> ( B x. ( C x. D ) ) = ( ( A x. C ) x. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mulassocd.1 | |- ( ph -> B e. RR ) |
|
2 | int-mulassocd.2 | |- ( ph -> C e. RR ) |
|
3 | int-mulassocd.3 | |- ( ph -> D e. RR ) |
|
4 | int-mulassocd.4 | |- ( ph -> A = B ) |
|
5 | 1 | recnd | |- ( ph -> B e. CC ) |
6 | 2 | recnd | |- ( ph -> C e. CC ) |
7 | 3 | recnd | |- ( ph -> D e. CC ) |
8 | 5 6 7 | mulassd | |- ( ph -> ( ( B x. C ) x. D ) = ( B x. ( C x. D ) ) ) |
9 | 4 | eqcomd | |- ( ph -> B = A ) |
10 | 9 | oveq1d | |- ( ph -> ( B x. C ) = ( A x. C ) ) |
11 | 10 | oveq1d | |- ( ph -> ( ( B x. C ) x. D ) = ( ( A x. C ) x. D ) ) |
12 | 8 11 | eqtr3d | |- ( ph -> ( B x. ( C x. D ) ) = ( ( A x. C ) x. D ) ) |