Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-mulassocd.1 | |- ( ph -> B e. RR ) |
|
| int-mulassocd.2 | |- ( ph -> C e. RR ) |
||
| int-mulassocd.3 | |- ( ph -> D e. RR ) |
||
| int-mulassocd.4 | |- ( ph -> A = B ) |
||
| Assertion | int-mulassocd | |- ( ph -> ( B x. ( C x. D ) ) = ( ( A x. C ) x. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulassocd.1 | |- ( ph -> B e. RR ) |
|
| 2 | int-mulassocd.2 | |- ( ph -> C e. RR ) |
|
| 3 | int-mulassocd.3 | |- ( ph -> D e. RR ) |
|
| 4 | int-mulassocd.4 | |- ( ph -> A = B ) |
|
| 5 | 1 | recnd | |- ( ph -> B e. CC ) |
| 6 | 2 | recnd | |- ( ph -> C e. CC ) |
| 7 | 3 | recnd | |- ( ph -> D e. CC ) |
| 8 | 5 6 7 | mulassd | |- ( ph -> ( ( B x. C ) x. D ) = ( B x. ( C x. D ) ) ) |
| 9 | 4 | eqcomd | |- ( ph -> B = A ) |
| 10 | 9 | oveq1d | |- ( ph -> ( B x. C ) = ( A x. C ) ) |
| 11 | 10 | oveq1d | |- ( ph -> ( ( B x. C ) x. D ) = ( ( A x. C ) x. D ) ) |
| 12 | 8 11 | eqtr3d | |- ( ph -> ( B x. ( C x. D ) ) = ( ( A x. C ) x. D ) ) |