Metamath Proof Explorer


Theorem int-mulassocd

Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulassocd.1 ( 𝜑𝐵 ∈ ℝ )
int-mulassocd.2 ( 𝜑𝐶 ∈ ℝ )
int-mulassocd.3 ( 𝜑𝐷 ∈ ℝ )
int-mulassocd.4 ( 𝜑𝐴 = 𝐵 )
Assertion int-mulassocd ( 𝜑 → ( 𝐵 · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) )

Proof

Step Hyp Ref Expression
1 int-mulassocd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-mulassocd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-mulassocd.3 ( 𝜑𝐷 ∈ ℝ )
4 int-mulassocd.4 ( 𝜑𝐴 = 𝐵 )
5 1 recnd ( 𝜑𝐵 ∈ ℂ )
6 2 recnd ( 𝜑𝐶 ∈ ℂ )
7 3 recnd ( 𝜑𝐷 ∈ ℂ )
8 5 6 7 mulassd ( 𝜑 → ( ( 𝐵 · 𝐶 ) · 𝐷 ) = ( 𝐵 · ( 𝐶 · 𝐷 ) ) )
9 4 eqcomd ( 𝜑𝐵 = 𝐴 )
10 9 oveq1d ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐴 · 𝐶 ) )
11 10 oveq1d ( 𝜑 → ( ( 𝐵 · 𝐶 ) · 𝐷 ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) )
12 8 11 eqtr3d ( 𝜑 → ( 𝐵 · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) )