Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-mulassocd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| int-mulassocd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| int-mulassocd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| int-mulassocd.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | int-mulassocd | ⊢ ( 𝜑 → ( 𝐵 · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulassocd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | int-mulassocd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | int-mulassocd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 4 | int-mulassocd.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 5 | 1 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 | 2 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 7 | 3 | recnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 8 | 5 6 7 | mulassd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · 𝐷 ) = ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) |
| 9 | 4 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 10 | 9 | oveq1d | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) · 𝐷 ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) ) |
| 12 | 8 11 | eqtr3d | ⊢ ( 𝜑 → ( 𝐵 · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · 𝐷 ) ) |