Metamath Proof Explorer
Description: MultiplicationSimplification generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-mulsimpd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
int-mulsimpd.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
int-mulsimpd.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
|
Assertion |
int-mulsimpd |
⊢ ( 𝜑 → 1 = ( 𝐴 / 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-mulsimpd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
2 |
|
int-mulsimpd.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
|
int-mulsimpd.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
4 |
1
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
5 |
4 3 2
|
diveq1bd |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) = 1 ) |
6 |
5
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 𝐴 / 𝐵 ) ) |