Metamath Proof Explorer


Theorem int-mulsimpd

Description: MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulsimpd.1 ( 𝜑𝐵 ∈ ℝ )
int-mulsimpd.2 ( 𝜑𝐴 = 𝐵 )
int-mulsimpd.3 ( 𝜑𝐵 ≠ 0 )
Assertion int-mulsimpd ( 𝜑 → 1 = ( 𝐴 / 𝐵 ) )

Proof

Step Hyp Ref Expression
1 int-mulsimpd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-mulsimpd.2 ( 𝜑𝐴 = 𝐵 )
3 int-mulsimpd.3 ( 𝜑𝐵 ≠ 0 )
4 1 recnd ( 𝜑𝐵 ∈ ℂ )
5 4 3 2 diveq1bd ( 𝜑 → ( 𝐴 / 𝐵 ) = 1 )
6 5 eqcomd ( 𝜑 → 1 = ( 𝐴 / 𝐵 ) )