Metamath Proof Explorer


Theorem int-mulsimpd

Description: MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulsimpd.1
|- ( ph -> B e. RR )
int-mulsimpd.2
|- ( ph -> A = B )
int-mulsimpd.3
|- ( ph -> B =/= 0 )
Assertion int-mulsimpd
|- ( ph -> 1 = ( A / B ) )

Proof

Step Hyp Ref Expression
1 int-mulsimpd.1
 |-  ( ph -> B e. RR )
2 int-mulsimpd.2
 |-  ( ph -> A = B )
3 int-mulsimpd.3
 |-  ( ph -> B =/= 0 )
4 1 recnd
 |-  ( ph -> B e. CC )
5 4 3 2 diveq1bd
 |-  ( ph -> ( A / B ) = 1 )
6 5 eqcomd
 |-  ( ph -> 1 = ( A / B ) )