Step |
Hyp |
Ref |
Expression |
1 |
|
int-leftdistd.1 |
|- ( ph -> B e. RR ) |
2 |
|
int-leftdistd.2 |
|- ( ph -> C e. RR ) |
3 |
|
int-leftdistd.3 |
|- ( ph -> D e. RR ) |
4 |
|
int-leftdistd.4 |
|- ( ph -> A = B ) |
5 |
2
|
recnd |
|- ( ph -> C e. CC ) |
6 |
3
|
recnd |
|- ( ph -> D e. CC ) |
7 |
1
|
recnd |
|- ( ph -> B e. CC ) |
8 |
5 6 7
|
adddird |
|- ( ph -> ( ( C + D ) x. B ) = ( ( C x. B ) + ( D x. B ) ) ) |
9 |
5 7
|
mulcld |
|- ( ph -> ( C x. B ) e. CC ) |
10 |
6 7
|
mulcld |
|- ( ph -> ( D x. B ) e. CC ) |
11 |
9 10
|
addcomd |
|- ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( D x. B ) + ( C x. B ) ) ) |
12 |
10 9
|
addcomd |
|- ( ph -> ( ( D x. B ) + ( C x. B ) ) = ( ( C x. B ) + ( D x. B ) ) ) |
13 |
4
|
eqcomd |
|- ( ph -> B = A ) |
14 |
13
|
oveq2d |
|- ( ph -> ( C x. B ) = ( C x. A ) ) |
15 |
13
|
oveq2d |
|- ( ph -> ( D x. B ) = ( D x. A ) ) |
16 |
14 15
|
oveq12d |
|- ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( C x. A ) + ( D x. A ) ) ) |
17 |
12 16
|
eqtrd |
|- ( ph -> ( ( D x. B ) + ( C x. B ) ) = ( ( C x. A ) + ( D x. A ) ) ) |
18 |
8 11 17
|
3eqtrd |
|- ( ph -> ( ( C + D ) x. B ) = ( ( C x. A ) + ( D x. A ) ) ) |