| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-leftdistd.1 |
|- ( ph -> B e. RR ) |
| 2 |
|
int-leftdistd.2 |
|- ( ph -> C e. RR ) |
| 3 |
|
int-leftdistd.3 |
|- ( ph -> D e. RR ) |
| 4 |
|
int-leftdistd.4 |
|- ( ph -> A = B ) |
| 5 |
2
|
recnd |
|- ( ph -> C e. CC ) |
| 6 |
3
|
recnd |
|- ( ph -> D e. CC ) |
| 7 |
1
|
recnd |
|- ( ph -> B e. CC ) |
| 8 |
5 6 7
|
adddird |
|- ( ph -> ( ( C + D ) x. B ) = ( ( C x. B ) + ( D x. B ) ) ) |
| 9 |
5 7
|
mulcld |
|- ( ph -> ( C x. B ) e. CC ) |
| 10 |
6 7
|
mulcld |
|- ( ph -> ( D x. B ) e. CC ) |
| 11 |
9 10
|
addcomd |
|- ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( D x. B ) + ( C x. B ) ) ) |
| 12 |
10 9
|
addcomd |
|- ( ph -> ( ( D x. B ) + ( C x. B ) ) = ( ( C x. B ) + ( D x. B ) ) ) |
| 13 |
4
|
eqcomd |
|- ( ph -> B = A ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( C x. B ) = ( C x. A ) ) |
| 15 |
13
|
oveq2d |
|- ( ph -> ( D x. B ) = ( D x. A ) ) |
| 16 |
14 15
|
oveq12d |
|- ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( C x. A ) + ( D x. A ) ) ) |
| 17 |
12 16
|
eqtrd |
|- ( ph -> ( ( D x. B ) + ( C x. B ) ) = ( ( C x. A ) + ( D x. A ) ) ) |
| 18 |
8 11 17
|
3eqtrd |
|- ( ph -> ( ( C + D ) x. B ) = ( ( C x. A ) + ( D x. A ) ) ) |