| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-rightdistd.1 |
|- ( ph -> B e. RR ) |
| 2 |
|
int-rightdistd.2 |
|- ( ph -> C e. RR ) |
| 3 |
|
int-rightdistd.3 |
|- ( ph -> D e. RR ) |
| 4 |
|
int-rightdistd.4 |
|- ( ph -> A = B ) |
| 5 |
1
|
recnd |
|- ( ph -> B e. CC ) |
| 6 |
2
|
recnd |
|- ( ph -> C e. CC ) |
| 7 |
3
|
recnd |
|- ( ph -> D e. CC ) |
| 8 |
6 7
|
addcld |
|- ( ph -> ( C + D ) e. CC ) |
| 9 |
5 8
|
mulcomd |
|- ( ph -> ( B x. ( C + D ) ) = ( ( C + D ) x. B ) ) |
| 10 |
6 5
|
mulcomd |
|- ( ph -> ( C x. B ) = ( B x. C ) ) |
| 11 |
4
|
eqcomd |
|- ( ph -> B = A ) |
| 12 |
11
|
oveq1d |
|- ( ph -> ( B x. C ) = ( A x. C ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ph -> ( C x. B ) = ( A x. C ) ) |
| 14 |
7 5
|
mulcomd |
|- ( ph -> ( D x. B ) = ( B x. D ) ) |
| 15 |
11
|
oveq1d |
|- ( ph -> ( B x. D ) = ( A x. D ) ) |
| 16 |
14 15
|
eqtrd |
|- ( ph -> ( D x. B ) = ( A x. D ) ) |
| 17 |
13 16
|
oveq12d |
|- ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( A x. C ) + ( A x. D ) ) ) |
| 18 |
6 5 7 17
|
joinlmuladdmuld |
|- ( ph -> ( ( C + D ) x. B ) = ( ( A x. C ) + ( A x. D ) ) ) |
| 19 |
9 18
|
eqtrd |
|- ( ph -> ( B x. ( C + D ) ) = ( ( A x. C ) + ( A x. D ) ) ) |