Metamath Proof Explorer


Theorem int-rightdistd

Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-rightdistd.1 φ B
int-rightdistd.2 φ C
int-rightdistd.3 φ D
int-rightdistd.4 φ A = B
Assertion int-rightdistd φ B C + D = A C + A D

Proof

Step Hyp Ref Expression
1 int-rightdistd.1 φ B
2 int-rightdistd.2 φ C
3 int-rightdistd.3 φ D
4 int-rightdistd.4 φ A = B
5 1 recnd φ B
6 2 recnd φ C
7 3 recnd φ D
8 6 7 addcld φ C + D
9 5 8 mulcomd φ B C + D = C + D B
10 6 5 mulcomd φ C B = B C
11 4 eqcomd φ B = A
12 11 oveq1d φ B C = A C
13 10 12 eqtrd φ C B = A C
14 7 5 mulcomd φ D B = B D
15 11 oveq1d φ B D = A D
16 14 15 eqtrd φ D B = A D
17 13 16 oveq12d φ C B + D B = A C + A D
18 6 5 7 17 joinlmuladdmuld φ C + D B = A C + A D
19 9 18 eqtrd φ B C + D = A C + A D