Metamath Proof Explorer


Theorem int-sqdefd

Description: SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-sqdefd.1 φ B
int-sqdefd.2 φ A = B
Assertion int-sqdefd φ A B = A 2

Proof

Step Hyp Ref Expression
1 int-sqdefd.1 φ B
2 int-sqdefd.2 φ A = B
3 2 oveq1d φ A 2 = B 2
4 1 recnd φ B
5 4 sqvald φ B 2 = B B
6 eqcom A = B B = A
7 6 imbi2i φ A = B φ B = A
8 2 7 mpbi φ B = A
9 8 oveq1d φ B B = A B
10 5 9 eqtrd φ B 2 = A B
11 3 10 eqtrd φ A 2 = A B
12 11 eqcomd φ A B = A 2