Metamath Proof Explorer


Theorem int-sqdefd

Description: SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-sqdefd.1 ( 𝜑𝐵 ∈ ℝ )
int-sqdefd.2 ( 𝜑𝐴 = 𝐵 )
Assertion int-sqdefd ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐴 ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 int-sqdefd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-sqdefd.2 ( 𝜑𝐴 = 𝐵 )
3 2 oveq1d ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) )
4 1 recnd ( 𝜑𝐵 ∈ ℂ )
5 4 sqvald ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
6 eqcom ( 𝐴 = 𝐵𝐵 = 𝐴 )
7 6 imbi2i ( ( 𝜑𝐴 = 𝐵 ) ↔ ( 𝜑𝐵 = 𝐴 ) )
8 2 7 mpbi ( 𝜑𝐵 = 𝐴 )
9 8 oveq1d ( 𝜑 → ( 𝐵 · 𝐵 ) = ( 𝐴 · 𝐵 ) )
10 5 9 eqtrd ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐴 · 𝐵 ) )
11 3 10 eqtrd ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐵 ) )
12 11 eqcomd ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐴 ↑ 2 ) )