Description: SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-sqdefd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| int-sqdefd.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | int-sqdefd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐴 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-sqdefd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | int-sqdefd.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 4 | 1 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 5 | 4 | sqvald | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 6 | eqcom | ⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) | |
| 7 | 6 | imbi2i | ⊢ ( ( 𝜑 → 𝐴 = 𝐵 ) ↔ ( 𝜑 → 𝐵 = 𝐴 ) ) |
| 8 | 2 7 | mpbi | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 9 | 8 | oveq1d | ⊢ ( 𝜑 → ( 𝐵 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 11 | 3 10 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐴 ↑ 2 ) ) |