Step |
Hyp |
Ref |
Expression |
1 |
|
int-sqdefd.1 |
|- ( ph -> B e. RR ) |
2 |
|
int-sqdefd.2 |
|- ( ph -> A = B ) |
3 |
2
|
oveq1d |
|- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) |
4 |
1
|
recnd |
|- ( ph -> B e. CC ) |
5 |
4
|
sqvald |
|- ( ph -> ( B ^ 2 ) = ( B x. B ) ) |
6 |
|
eqcom |
|- ( A = B <-> B = A ) |
7 |
6
|
imbi2i |
|- ( ( ph -> A = B ) <-> ( ph -> B = A ) ) |
8 |
2 7
|
mpbi |
|- ( ph -> B = A ) |
9 |
8
|
oveq1d |
|- ( ph -> ( B x. B ) = ( A x. B ) ) |
10 |
5 9
|
eqtrd |
|- ( ph -> ( B ^ 2 ) = ( A x. B ) ) |
11 |
3 10
|
eqtrd |
|- ( ph -> ( A ^ 2 ) = ( A x. B ) ) |
12 |
11
|
eqcomd |
|- ( ph -> ( A x. B ) = ( A ^ 2 ) ) |