Metamath Proof Explorer


Theorem int-sqdefd

Description: SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-sqdefd.1
|- ( ph -> B e. RR )
int-sqdefd.2
|- ( ph -> A = B )
Assertion int-sqdefd
|- ( ph -> ( A x. B ) = ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 int-sqdefd.1
 |-  ( ph -> B e. RR )
2 int-sqdefd.2
 |-  ( ph -> A = B )
3 2 oveq1d
 |-  ( ph -> ( A ^ 2 ) = ( B ^ 2 ) )
4 1 recnd
 |-  ( ph -> B e. CC )
5 4 sqvald
 |-  ( ph -> ( B ^ 2 ) = ( B x. B ) )
6 eqcom
 |-  ( A = B <-> B = A )
7 6 imbi2i
 |-  ( ( ph -> A = B ) <-> ( ph -> B = A ) )
8 2 7 mpbi
 |-  ( ph -> B = A )
9 8 oveq1d
 |-  ( ph -> ( B x. B ) = ( A x. B ) )
10 5 9 eqtrd
 |-  ( ph -> ( B ^ 2 ) = ( A x. B ) )
11 3 10 eqtrd
 |-  ( ph -> ( A ^ 2 ) = ( A x. B ) )
12 11 eqcomd
 |-  ( ph -> ( A x. B ) = ( A ^ 2 ) )