| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-rightdistd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 2 |
|
int-rightdistd.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
int-rightdistd.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 4 |
|
int-rightdistd.4 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 5 |
1
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 |
2
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 7 |
3
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 8 |
6 7
|
addcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℂ ) |
| 9 |
5 8
|
mulcomd |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐶 + 𝐷 ) ) = ( ( 𝐶 + 𝐷 ) · 𝐵 ) ) |
| 10 |
6 5
|
mulcomd |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐵 · 𝐶 ) ) |
| 11 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐴 · 𝐶 ) ) |
| 14 |
7 5
|
mulcomd |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐵 · 𝐷 ) ) |
| 15 |
11
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 · 𝐷 ) = ( 𝐴 · 𝐷 ) ) |
| 16 |
14 15
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐴 · 𝐷 ) ) |
| 17 |
13 16
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 18 |
6 5 7 17
|
joinlmuladdmuld |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 19 |
9 18
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |