Metamath Proof Explorer


Theorem int-rightdistd

Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-rightdistd.1 ( 𝜑𝐵 ∈ ℝ )
int-rightdistd.2 ( 𝜑𝐶 ∈ ℝ )
int-rightdistd.3 ( 𝜑𝐷 ∈ ℝ )
int-rightdistd.4 ( 𝜑𝐴 = 𝐵 )
Assertion int-rightdistd ( 𝜑 → ( 𝐵 · ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 int-rightdistd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-rightdistd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-rightdistd.3 ( 𝜑𝐷 ∈ ℝ )
4 int-rightdistd.4 ( 𝜑𝐴 = 𝐵 )
5 1 recnd ( 𝜑𝐵 ∈ ℂ )
6 2 recnd ( 𝜑𝐶 ∈ ℂ )
7 3 recnd ( 𝜑𝐷 ∈ ℂ )
8 6 7 addcld ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℂ )
9 5 8 mulcomd ( 𝜑 → ( 𝐵 · ( 𝐶 + 𝐷 ) ) = ( ( 𝐶 + 𝐷 ) · 𝐵 ) )
10 6 5 mulcomd ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐵 · 𝐶 ) )
11 4 eqcomd ( 𝜑𝐵 = 𝐴 )
12 11 oveq1d ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐴 · 𝐶 ) )
13 10 12 eqtrd ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐴 · 𝐶 ) )
14 7 5 mulcomd ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐵 · 𝐷 ) )
15 11 oveq1d ( 𝜑 → ( 𝐵 · 𝐷 ) = ( 𝐴 · 𝐷 ) )
16 14 15 eqtrd ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐴 · 𝐷 ) )
17 13 16 oveq12d ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) )
18 6 5 7 17 joinlmuladdmuld ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) )
19 9 18 eqtrd ( 𝜑 → ( 𝐵 · ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) )