Metamath Proof Explorer


Theorem int-leftdistd

Description: AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-leftdistd.1 φ B
int-leftdistd.2 φ C
int-leftdistd.3 φ D
int-leftdistd.4 φ A = B
Assertion int-leftdistd φ C + D B = C A + D A

Proof

Step Hyp Ref Expression
1 int-leftdistd.1 φ B
2 int-leftdistd.2 φ C
3 int-leftdistd.3 φ D
4 int-leftdistd.4 φ A = B
5 2 recnd φ C
6 3 recnd φ D
7 1 recnd φ B
8 5 6 7 adddird φ C + D B = C B + D B
9 5 7 mulcld φ C B
10 6 7 mulcld φ D B
11 9 10 addcomd φ C B + D B = D B + C B
12 10 9 addcomd φ D B + C B = C B + D B
13 4 eqcomd φ B = A
14 13 oveq2d φ C B = C A
15 13 oveq2d φ D B = D A
16 14 15 oveq12d φ C B + D B = C A + D A
17 12 16 eqtrd φ D B + C B = C A + D A
18 8 11 17 3eqtrd φ C + D B = C A + D A