Metamath Proof Explorer


Theorem int-leftdistd

Description: AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-leftdistd.1 ( 𝜑𝐵 ∈ ℝ )
int-leftdistd.2 ( 𝜑𝐶 ∈ ℝ )
int-leftdistd.3 ( 𝜑𝐷 ∈ ℝ )
int-leftdistd.4 ( 𝜑𝐴 = 𝐵 )
Assertion int-leftdistd ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 int-leftdistd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-leftdistd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-leftdistd.3 ( 𝜑𝐷 ∈ ℝ )
4 int-leftdistd.4 ( 𝜑𝐴 = 𝐵 )
5 2 recnd ( 𝜑𝐶 ∈ ℂ )
6 3 recnd ( 𝜑𝐷 ∈ ℂ )
7 1 recnd ( 𝜑𝐵 ∈ ℂ )
8 5 6 7 adddird ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) )
9 5 7 mulcld ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℂ )
10 6 7 mulcld ( 𝜑 → ( 𝐷 · 𝐵 ) ∈ ℂ )
11 9 10 addcomd ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) )
12 10 9 addcomd ( 𝜑 → ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) )
13 4 eqcomd ( 𝜑𝐵 = 𝐴 )
14 13 oveq2d ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐶 · 𝐴 ) )
15 13 oveq2d ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐷 · 𝐴 ) )
16 14 15 oveq12d ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) )
17 12 16 eqtrd ( 𝜑 → ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) )
18 8 11 17 3eqtrd ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) )