Step |
Hyp |
Ref |
Expression |
1 |
|
int-leftdistd.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
2 |
|
int-leftdistd.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
int-leftdistd.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
4 |
|
int-leftdistd.4 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
5 |
2
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 |
3
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
7 |
1
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
8 |
5 6 7
|
adddird |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) ) |
9 |
5 7
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
10 |
6 7
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) ∈ ℂ ) |
11 |
9 10
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) ) |
12 |
10 9
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) ) |
13 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐶 · 𝐴 ) ) |
15 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐷 · 𝐴 ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) + ( 𝐷 · 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) ) |
17 |
12 16
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) ) |
18 |
8 11 17
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) · 𝐵 ) = ( ( 𝐶 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) ) |