Metamath Proof Explorer


Theorem int-mulcomd

Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulcomd.1 ( 𝜑𝐵 ∈ ℝ )
int-mulcomd.2 ( 𝜑𝐶 ∈ ℝ )
int-mulcomd.3 ( 𝜑𝐴 = 𝐵 )
Assertion int-mulcomd ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 int-mulcomd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-mulcomd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-mulcomd.3 ( 𝜑𝐴 = 𝐵 )
4 1 recnd ( 𝜑𝐵 ∈ ℂ )
5 2 recnd ( 𝜑𝐶 ∈ ℂ )
6 4 5 mulcomd ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
7 3 eqcomd ( 𝜑𝐵 = 𝐴 )
8 7 oveq2d ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐶 · 𝐴 ) )
9 6 8 eqtrd ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) )