Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-mulcomd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| int-mulcomd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| int-mulcomd.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | int-mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulcomd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | int-mulcomd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | int-mulcomd.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 4 | 1 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 5 | 2 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 6 | 4 5 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 7 | 3 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐶 · 𝐴 ) ) |
| 9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |