Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | int-mulcomd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
int-mulcomd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
int-mulcomd.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | int-mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mulcomd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
2 | int-mulcomd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
3 | int-mulcomd.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
4 | 1 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
5 | 2 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 | 4 5 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
7 | 3 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
8 | 7 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐶 · 𝐴 ) ) |
9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |