Metamath Proof Explorer


Theorem int-addsimpd

Description: AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addsimpd.1 ( 𝜑𝐴 ∈ ℝ )
int-addsimpd.2 ( 𝜑𝐴 = 𝐵 )
Assertion int-addsimpd ( 𝜑 → 0 = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 int-addsimpd.1 ( 𝜑𝐴 ∈ ℝ )
2 int-addsimpd.2 ( 𝜑𝐴 = 𝐵 )
3 1 recnd ( 𝜑𝐴 ∈ ℂ )
4 3 2 subeq0bd ( 𝜑 → ( 𝐴𝐵 ) = 0 )
5 4 eqcomd ( 𝜑 → 0 = ( 𝐴𝐵 ) )