Metamath Proof Explorer
Description: AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-addsimpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-addsimpd.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
int-addsimpd |
⊢ ( 𝜑 → 0 = ( 𝐴 − 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-addsimpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
int-addsimpd.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 3 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
3 2
|
subeq0bd |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 0 ) |
| 5 |
4
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 𝐴 − 𝐵 ) ) |