Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | int-addassocd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| int-addassocd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| int-addassocd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| int-addassocd.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | int-addassocd | ⊢ ( 𝜑 → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-addassocd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | int-addassocd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | int-addassocd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 4 | int-addassocd.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 5 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 6 | 2 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 7 | 3 | recnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 8 | 5 6 7 | addassd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) + 𝐷 ) = ( 𝐴 + ( 𝐶 + 𝐷 ) ) ) |
| 9 | 4 | oveq1d | ⊢ ( 𝜑 → ( 𝐴 + ( 𝐶 + 𝐷 ) ) = ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) |
| 10 | 8 9 | eqtr2d | ⊢ ( 𝜑 → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐷 ) ) |