Metamath Proof Explorer


Theorem int-addassocd

Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addassocd.1 ( 𝜑𝐴 ∈ ℝ )
int-addassocd.2 ( 𝜑𝐶 ∈ ℝ )
int-addassocd.3 ( 𝜑𝐷 ∈ ℝ )
int-addassocd.4 ( 𝜑𝐴 = 𝐵 )
Assertion int-addassocd ( 𝜑 → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐷 ) )

Proof

Step Hyp Ref Expression
1 int-addassocd.1 ( 𝜑𝐴 ∈ ℝ )
2 int-addassocd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-addassocd.3 ( 𝜑𝐷 ∈ ℝ )
4 int-addassocd.4 ( 𝜑𝐴 = 𝐵 )
5 1 recnd ( 𝜑𝐴 ∈ ℂ )
6 2 recnd ( 𝜑𝐶 ∈ ℂ )
7 3 recnd ( 𝜑𝐷 ∈ ℂ )
8 5 6 7 addassd ( 𝜑 → ( ( 𝐴 + 𝐶 ) + 𝐷 ) = ( 𝐴 + ( 𝐶 + 𝐷 ) ) )
9 4 oveq1d ( 𝜑 → ( 𝐴 + ( 𝐶 + 𝐷 ) ) = ( 𝐵 + ( 𝐶 + 𝐷 ) ) )
10 8 9 eqtr2d ( 𝜑 → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐷 ) )