Metamath Proof Explorer


Theorem int-addassocd

Description: AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addassocd.1 φ A
int-addassocd.2 φ C
int-addassocd.3 φ D
int-addassocd.4 φ A = B
Assertion int-addassocd φ B + C + D = A + C + D

Proof

Step Hyp Ref Expression
1 int-addassocd.1 φ A
2 int-addassocd.2 φ C
3 int-addassocd.3 φ D
4 int-addassocd.4 φ A = B
5 1 recnd φ A
6 2 recnd φ C
7 3 recnd φ D
8 5 6 7 addassd φ A + C + D = A + C + D
9 4 oveq1d φ A + C + D = B + C + D
10 8 9 eqtr2d φ B + C + D = A + C + D