Metamath Proof Explorer


Theorem int-addcomd

Description: AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addcomd.1 ( 𝜑𝐵 ∈ ℝ )
int-addcomd.2 ( 𝜑𝐶 ∈ ℝ )
int-addcomd.3 ( 𝜑𝐴 = 𝐵 )
Assertion int-addcomd ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 int-addcomd.1 ( 𝜑𝐵 ∈ ℝ )
2 int-addcomd.2 ( 𝜑𝐶 ∈ ℝ )
3 int-addcomd.3 ( 𝜑𝐴 = 𝐵 )
4 1 recnd ( 𝜑𝐵 ∈ ℂ )
5 2 recnd ( 𝜑𝐶 ∈ ℂ )
6 4 5 addcomd ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
7 3 eqcomd ( 𝜑𝐵 = 𝐴 )
8 7 oveq2d ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐶 + 𝐴 ) )
9 6 8 eqtrd ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐴 ) )