Metamath Proof Explorer


Theorem int-eqprincd

Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqprincd.1
|- ( ph -> A = B )
int-eqprincd.2
|- ( ph -> C = D )
Assertion int-eqprincd
|- ( ph -> ( A + C ) = ( B + D ) )

Proof

Step Hyp Ref Expression
1 int-eqprincd.1
 |-  ( ph -> A = B )
2 int-eqprincd.2
 |-  ( ph -> C = D )
3 1 2 oveq12d
 |-  ( ph -> ( A + C ) = ( B + D ) )