Metamath Proof Explorer


Theorem int-eqprincd

Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-eqprincd.1 ( 𝜑𝐴 = 𝐵 )
int-eqprincd.2 ( 𝜑𝐶 = 𝐷 )
Assertion int-eqprincd ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐷 ) )

Proof

Step Hyp Ref Expression
1 int-eqprincd.1 ( 𝜑𝐴 = 𝐵 )
2 int-eqprincd.2 ( 𝜑𝐶 = 𝐷 )
3 1 2 oveq12d ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐷 ) )