Metamath Proof Explorer
Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-eqprincd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
int-eqprincd.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
|
Assertion |
int-eqprincd |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
int-eqprincd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
int-eqprincd.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
3 |
1 2
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐷 ) ) |