Metamath Proof Explorer


Theorem intimasn2

Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimasn2
|- ( B e. V -> ( |^| A " { B } ) = |^|_ x e. A ( x " { B } ) )

Proof

Step Hyp Ref Expression
1 intimasn
 |-  ( B e. V -> ( |^| A " { B } ) = |^| { y | E. x e. A y = ( x " { B } ) } )
2 intima0
 |-  |^|_ x e. A ( x " { B } ) = |^| { y | E. x e. A y = ( x " { B } ) }
3 1 2 eqtr4di
 |-  ( B e. V -> ( |^| A " { B } ) = |^|_ x e. A ( x " { B } ) )