Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intimasn2 | |- ( B e. V -> ( |^| A " { B } ) = |^|_ x e. A ( x " { B } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intimasn | |- ( B e. V -> ( |^| A " { B } ) = |^| { y | E. x e. A y = ( x " { B } ) } ) |
|
2 | intima0 | |- |^|_ x e. A ( x " { B } ) = |^| { y | E. x e. A y = ( x " { B } ) } |
|
3 | 1 2 | eqtr4di | |- ( B e. V -> ( |^| A " { B } ) = |^|_ x e. A ( x " { B } ) ) |