Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | intimasn2 | ⊢ ( 𝐵 ∈ 𝑉 → ( ∩ 𝐴 “ { 𝐵 } ) = ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ { 𝐵 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intimasn | ⊢ ( 𝐵 ∈ 𝑉 → ( ∩ 𝐴 “ { 𝐵 } ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑥 “ { 𝐵 } ) } ) | |
2 | intima0 | ⊢ ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ { 𝐵 } ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑥 “ { 𝐵 } ) } | |
3 | 1 2 | eqtr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( ∩ 𝐴 “ { 𝐵 } ) = ∩ 𝑥 ∈ 𝐴 ( 𝑥 “ { 𝐵 } ) ) |