Metamath Proof Explorer


Theorem intimasn2

Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimasn2 ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = 𝑥𝐴 ( 𝑥 “ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 intimasn ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝑥 “ { 𝐵 } ) } )
2 intima0 𝑥𝐴 ( 𝑥 “ { 𝐵 } ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ( 𝑥 “ { 𝐵 } ) }
3 1 2 eqtr4di ( 𝐵𝑉 → ( 𝐴 “ { 𝐵 } ) = 𝑥𝐴 ( 𝑥 “ { 𝐵 } ) )