| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inveq.b |
|- B = ( Base ` C ) |
| 2 |
|
inveq.n |
|- N = ( Inv ` C ) |
| 3 |
|
inveq.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
inveq.x |
|- ( ph -> X e. B ) |
| 5 |
|
inveq.y |
|- ( ph -> Y e. B ) |
| 6 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> C e. Cat ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> Y e. B ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> X e. B ) |
| 10 |
1 2 3 4 5 6
|
isinv |
|- ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) |
| 11 |
|
simpr |
|- ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) -> G ( Y ( Sect ` C ) X ) F ) |
| 12 |
10 11
|
biimtrdi |
|- ( ph -> ( F ( X N Y ) G -> G ( Y ( Sect ` C ) X ) F ) ) |
| 13 |
12
|
com12 |
|- ( F ( X N Y ) G -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) |
| 14 |
13
|
adantr |
|- ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) |
| 15 |
14
|
impcom |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G ( Y ( Sect ` C ) X ) F ) |
| 16 |
1 2 3 4 5 6
|
isinv |
|- ( ph -> ( F ( X N Y ) K <-> ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) ) ) |
| 17 |
|
simpl |
|- ( ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) -> F ( X ( Sect ` C ) Y ) K ) |
| 18 |
16 17
|
biimtrdi |
|- ( ph -> ( F ( X N Y ) K -> F ( X ( Sect ` C ) Y ) K ) ) |
| 19 |
18
|
adantld |
|- ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> F ( X ( Sect ` C ) Y ) K ) ) |
| 20 |
19
|
imp |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> F ( X ( Sect ` C ) Y ) K ) |
| 21 |
1 6 7 8 9 15 20
|
sectcan |
|- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G = K ) |
| 22 |
21
|
ex |
|- ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> G = K ) ) |