Metamath Proof Explorer


Theorem inveq

Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of Adamek p. 28. (Contributed by AV, 10-Apr-2020) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses inveq.b B=BaseC
inveq.n N=InvC
inveq.c φCCat
inveq.x φXB
inveq.y φYB
Assertion inveq φFXNYGFXNYKG=K

Proof

Step Hyp Ref Expression
1 inveq.b B=BaseC
2 inveq.n N=InvC
3 inveq.c φCCat
4 inveq.x φXB
5 inveq.y φYB
6 eqid SectC=SectC
7 3 adantr φFXNYGFXNYKCCat
8 5 adantr φFXNYGFXNYKYB
9 4 adantr φFXNYGFXNYKXB
10 1 2 3 4 5 6 isinv φFXNYGFXSectCYGGYSectCXF
11 simpr FXSectCYGGYSectCXFGYSectCXF
12 10 11 syl6bi φFXNYGGYSectCXF
13 12 com12 FXNYGφGYSectCXF
14 13 adantr FXNYGFXNYKφGYSectCXF
15 14 impcom φFXNYGFXNYKGYSectCXF
16 1 2 3 4 5 6 isinv φFXNYKFXSectCYKKYSectCXF
17 simpl FXSectCYKKYSectCXFFXSectCYK
18 16 17 syl6bi φFXNYKFXSectCYK
19 18 adantld φFXNYGFXNYKFXSectCYK
20 19 imp φFXNYGFXNYKFXSectCYK
21 1 6 7 8 9 15 20 sectcan φFXNYGFXNYKG=K
22 21 ex φFXNYGFXNYKG=K