Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of Adamek p. 28. (Contributed by AV, 10-Apr-2020) (Revised by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inveq.b | |
|
inveq.n | |
||
inveq.c | |
||
inveq.x | |
||
inveq.y | |
||
Assertion | inveq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inveq.b | |
|
2 | inveq.n | |
|
3 | inveq.c | |
|
4 | inveq.x | |
|
5 | inveq.y | |
|
6 | eqid | |
|
7 | 3 | adantr | |
8 | 5 | adantr | |
9 | 4 | adantr | |
10 | 1 2 3 4 5 6 | isinv | |
11 | simpr | |
|
12 | 10 11 | syl6bi | |
13 | 12 | com12 | |
14 | 13 | adantr | |
15 | 14 | impcom | |
16 | 1 2 3 4 5 6 | isinv | |
17 | simpl | |
|
18 | 16 17 | syl6bi | |
19 | 18 | adantld | |
20 | 19 | imp | |
21 | 1 6 7 8 9 15 20 | sectcan | |
22 | 21 | ex | |