| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inveq.b |
|
| 2 |
|
inveq.n |
|
| 3 |
|
inveq.c |
|
| 4 |
|
inveq.x |
|
| 5 |
|
inveq.y |
|
| 6 |
|
eqid |
|
| 7 |
3
|
adantr |
|
| 8 |
5
|
adantr |
|
| 9 |
4
|
adantr |
|
| 10 |
1 2 3 4 5 6
|
isinv |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
biimtrdi |
|
| 13 |
12
|
com12 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
impcom |
|
| 16 |
1 2 3 4 5 6
|
isinv |
|
| 17 |
|
simpl |
|
| 18 |
16 17
|
biimtrdi |
|
| 19 |
18
|
adantld |
|
| 20 |
19
|
imp |
|
| 21 |
1 6 7 8 9 15 20
|
sectcan |
|
| 22 |
21
|
ex |
|