Metamath Proof Explorer


Theorem iocssre

Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014)

Ref Expression
Assertion iocssre
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR )

Proof

Step Hyp Ref Expression
1 elioc2
 |-  ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) )
2 1 biimp3a
 |-  ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> ( x e. RR /\ A < x /\ x <_ B ) )
3 2 simp1d
 |-  ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> x e. RR )
4 3 3expia
 |-  ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) -> x e. RR ) )
5 4 ssrdv
 |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR )