Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iocssre | |- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioc2 | |- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
|
2 | 1 | biimp3a | |- ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> ( x e. RR /\ A < x /\ x <_ B ) ) |
3 | 2 | simp1d | |- ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> x e. RR ) |
4 | 3 | 3expia | |- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) -> x e. RR ) ) |
5 | 4 | ssrdv | |- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |