| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsb1 |  |-  ( A. x x = y -> ( [ z / x ] ph <-> [ z / y ] ph ) ) | 
						
							| 2 |  | df-clab |  |-  ( z e. { x | ph } <-> [ z / x ] ph ) | 
						
							| 3 |  | df-clab |  |-  ( z e. { y | ph } <-> [ z / y ] ph ) | 
						
							| 4 | 1 2 3 | 3bitr4g |  |-  ( A. x x = y -> ( z e. { x | ph } <-> z e. { y | ph } ) ) | 
						
							| 5 | 4 | eqrdv |  |-  ( A. x x = y -> { x | ph } = { y | ph } ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( A. x x = y -> ( { x | ph } = { z } <-> { y | ph } = { z } ) ) | 
						
							| 7 | 6 | abbidv |  |-  ( A. x x = y -> { z | { x | ph } = { z } } = { z | { y | ph } = { z } } ) | 
						
							| 8 | 7 | unieqd |  |-  ( A. x x = y -> U. { z | { x | ph } = { z } } = U. { z | { y | ph } = { z } } ) | 
						
							| 9 |  | df-iota |  |-  ( iota x ph ) = U. { z | { x | ph } = { z } } | 
						
							| 10 |  | df-iota |  |-  ( iota y ph ) = U. { z | { y | ph } = { z } } | 
						
							| 11 | 8 9 10 | 3eqtr4g |  |-  ( A. x x = y -> ( iota x ph ) = ( iota y ph ) ) |