| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iotaval |  |-  ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z ) | 
						
							| 2 | 1 | eqcomd |  |-  ( A. x ( ph <-> x = z ) -> z = ( iota x ph ) ) | 
						
							| 3 | 2 | eximi |  |-  ( E. z A. x ( ph <-> x = z ) -> E. z z = ( iota x ph ) ) | 
						
							| 4 |  | eu6 |  |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) | 
						
							| 5 |  | isset |  |-  ( ( iota x ph ) e. _V <-> E. z z = ( iota x ph ) ) | 
						
							| 6 | 3 4 5 | 3imtr4i |  |-  ( E! x ph -> ( iota x ph ) e. _V ) | 
						
							| 7 |  | iotanul |  |-  ( -. E! x ph -> ( iota x ph ) = (/) ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 7 8 | eqeltrdi |  |-  ( -. E! x ph -> ( iota x ph ) e. _V ) | 
						
							| 10 | 6 9 | pm2.61i |  |-  ( iota x ph ) e. _V |